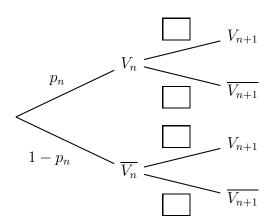
Exercice 1 (10 points)

Avant le début des travaux de construction d'une autoroute, une équipe d'archéologie préventive procède à des sondages successifs en des points régulièrement espacés sur le terrain.

Lorsque le n-ième sondage donne lieu à la découverte de vestiges, il est dit positif.


L'évènement : le n-ième sondage est positif est noté V_n , on note p_n la probabilité de l'évènement V_n .

L'expérience acquise au cours de ce type d'investigation permet de prévoir que :

- si un sondage est positif, le suivant a une probabilité égale à 0,6 d'être aussi positif;
- si un sondage est négatif, le suivant a une probabilité égale à 0,9 d'être aussi négatif.

On suppose que le premier sondage est positif, c'est-à-dire : $p_1 = 1$.

- 1. Calculer les probabilités des évènements suivants :
 - (a) A: les 2èmes et 3èmes sondages sont positifs;
 - (b) B: les 2èmes et 3èmes sondages sont négatifs
- 2. Calculer la probabilité p_3 pour que le 3ème sondage soit positif.
- 3. n désigne un entier naturel supérieur ou égal à 2. Recopier et compléter l'arbre ci-dessous en fonction des données de l'énoncé :

- 4. Pour tout entier naturel n non nul, établir que : $p_{n+1} = 0, 5p_n + 0, 1$.
- 5. On note u la suite définie, pour tout entier naturel n non nul par : $u_n = p_n 0, 2$.
 - (a) Démontrer que u est une suite géométrique, en préciser le premier terme et la raison.
 - (b) Exprimer p_n en fonction de n.
 - (c) Calculer la limite, quand n tend vers $+\infty$, de la probabilité p_n .

Exercice 2 (10 points)

On désigne par f la fonction définie sur l'intervalle [-2; 4] par

$$f(x) = (2x+1)e^{-2x} + 3.$$

On note C_f la courbe représentative de f dans un repère.

1. On note f' la fonction dérivée de f. Montrer que, pour tout $x\in [-2\ ;\ 4],$

$$f'(x) = -4xe^{-2x}.$$

- 2. Étudier les variations de f.
- 3. Déterminer l'équation de la tangente à C_f au point d'abscisse $\frac{1}{2}$
- 4. Soit D la droite d'équation y=3 . Etudier la position relative de \mathcal{C}_f et D .
- 5. Tracer C_f