L'USAGE DE LA CALCULATRICE N'EST PAS AUTORISE

Exercice 1 (3 points)

AUTOMATISMES QCM

Dans cet exercice , aucune justification n'est demandée et une seule réponse est possible par question . Pour chaque question , reportez son numéro sur votre copie et indiquez votre réponse.

1. Question 1

$$\sqrt{18} - 5\sqrt{2} + 7\sqrt{72} = 3\sqrt{2} - 5\sqrt{2} + 7 \times 6\sqrt{2} = 40\sqrt{2}$$

2. Question 2

$$f(x) = 5x^2 - 4x + 8$$
. $A(x;5)$ appartient à la courbe de f.

$$5x^2 - 4x + 8 = 5 \iff 5x^2 - 4x + 3 = 0$$

$$\Delta = 16 - 60 < 0$$
 donc aucune valeur possible

3. Question 3

Soient A(1;2) et B(-4;12). Une équation de la droite (AB) est :

$$\overrightarrow{AB}(-5;10)$$
 et $\overrightarrow{AM}(x-1;y-2)$

$$Donc: -5(y-2) - 10(x-1) = 0 \iff -10x - 5y + 20 = 0 \iff y = -2x + 4$$

Exercice 2 (10 points)

Les deux parties sont indépendantes

On considère la fonction f définie sur $\mathbb R$ par :

$$f(x) = x^3 - x^2 - 14x + 24$$

On appelle (C) sa courbe représentative dans un repère.

Partie A

1. Déterminer les réels a , b et c tels que : $f(x) = (x-2)(ax^2 + bx + c)$

$$f(x) = (x-2)(x^2 + x - 12)$$

2. Résoudre : f(x) = 0

$$x=2$$
 ou $x^2+x-12=0$ donc les solutions sont $x=2$, $x=-4$ ou $x=3$

1

3. Résoudre : f(x) < 0

On utilise un tableau de signes en n'oubliant pas x-2 et on obtient $x \in]-\infty; -4[\cup]2; 3[$

Partie B

- 1. Déterminer la dérivée de f que l'on notera $f'(x) = 3x^2 2x 14$
- 2. Déterminer le signe de f'(x) en fonction de x

$$f'(x) < 0 \text{ sur }]\frac{1-\sqrt{43}}{3}; \frac{1+\sqrt{43}}{3}[\text{ et } f'(x) > 0 \text{ sur }] - \infty; \frac{1-\sqrt{43}}{3}[\cup]\frac{1+\sqrt{43}}{3}; +\infty[$$

- 3. Déterminer l'équation de la tangente T à la courbe de f au point d'abscisse 0 y = -14x + 24
- 4. Etudier la position relative de la courbe de f et de sa tangente On étudie le signe de $g(x) = f(x) + 14x - 24 = x^2(x-1)$ Donc la courbe de f est au dessus de sa tangente sur]1; + ∞ [

Exercice 3 (7 points)
Soit la suite ()
$$u_n$$
) définie par $u_0 = \frac{1}{2}$ et $u_{n+1} = \frac{3}{5}u_n + 1$

- 1. Placer u_0 , u_1 , u_2 et u_3 sur l'axe des abscisses dans le graphique annexe en laissant apparents les traits de construction
- 2. Soit la suite (v_n) définie par $v_n = u_n \frac{5}{2}$
 - (a) Montrer que (v_n) est une suite géométrique dont on précisera la raison et le premier terme v_0
 - (b) Exprimer v_n en fonction de n
 - (c) Exprimer u_n en fonction de n
 - (d) Conjecturer la limite de (u_n)

