
Exercice 1

- 1) On a : f(x) = -3x + 5 *l point*
- 2) Graphique ci-contre 1 point
- 3) La solution de f(x) = g(x) est environ x = 1.81 point
 - 4) On a : f(x) < g(x) équivalent à : -3x + 5 < 2x 4

Donc -5x < -9

Et donc: x > 9/5

$$S = \left] \frac{9}{5}; + \infty \right[$$

2 points

Exercice 2

1) On a : f(x) = ax + b donc 2 points

$$\begin{cases} 2 = a + b \\ 7 = 4a + b \end{cases} \Leftrightarrow \begin{cases} 2 = a + b \\ 5 = 3a \end{cases} \Leftrightarrow \begin{cases} a = \frac{5}{3} \\ b = 2 - \frac{5}{3} = \frac{1}{3} \end{cases} \Leftrightarrow f(x) = \frac{5}{3}x + \frac{1}{3}$$

2) On calcule f(7): 1 point

$$f(7) = \frac{35}{3} + \frac{1}{3} = 12 \neq 9$$

Le point A n'est pas sur la droite de f

3) On sait que g(x) = ax + b 2 points

$$\begin{cases} 2 = a + b \\ 9 = 7a + b \end{cases} \Leftrightarrow \begin{cases} 2 = a + b \\ 7 = 6a \end{cases} \Leftrightarrow \begin{cases} a = \frac{7}{6} \\ b = \frac{5}{6} \end{cases} \Leftrightarrow g(x) = \frac{7}{6}x + \frac{5}{6} \end{cases}$$

Exercice 3

1) On a: 1,5 points

X	-∞		2		8		+∞
x-8		-		-	0	+	
2-x		+	0	-		_	
P(x)		-	0	+	0	_	

$$S = [2; 8]$$

2) On a 1,5 points

X	-∞		2/3		5/7		+∞
3x-2		-	0	+		+	
7x-5		-		-	0	+	
P(x)		+	0	-	0	+	

$$S = \left[\frac{2}{3}; \frac{5}{7}\right]$$

3) On a:
$$(2x-4)^2 - 25 = (2x-4-5)(2x-4+5) = (2x-9)(2x+1)$$

X	-∞		-1/2		9/2		+∞
2x+1		-	0	+		+	
2x-9		-		-	0	+	
P(x)		+	0	-	0	+	

$$S = \left] -\infty; -\frac{1}{2} \right] \cup \left[\frac{9}{2}; +\infty \right[$$

2 points

Exercice 4 1 point par question

1) On a:

$$I\left(\frac{5+4}{2};\frac{2+8}{2}\right) donc I\left(\frac{9}{2};5\right)$$

2) On a m le coefficient directeur de (AB) et m' celui de (CD)

$$m = \frac{7-2}{0-5} = -1$$
; $m' = \frac{3-8}{9-4} = -1$

Les droites (AB) et (CD) ont le même coefficient directeur ; elles sont donc parallèles

3) On a:

$$AB = \sqrt{(0-5)^2 + (7-2)^2} = \sqrt{50} = 5\sqrt{2}$$
; $CD = \sqrt{(9-4)^2 + (3-8)^2} = \sqrt{50} = 5\sqrt{2}$

- 4) AB = CD et (AB) parallèle à (CD) donc ABCD est un parallélogramme
- 5) Les diagonales d'un parallélogramme se coupent en leur milieu donc le milieu de [BD] est aussi celui de [AC] : c'est I(4,5;5)