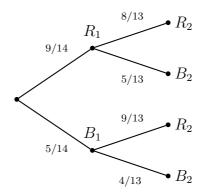
Exercice 1 (5 points)

Hélène et Mathieu veulent faire une excursion en quad . Le loueur dispose de 9 quads rouges et 5 bleus . Hélène choisit un quad puis Mathieu fait de même . On note R l'évènement "le quad choisi est rouge " et B l'évènement "le quad choisi est bleu" . On donnera les probabilités sous forme de fractions irréductibles .

1. Compléter l'arbre de probabilités suivant :



- 2. Quelle est la probabilité qu'Hélène ait choisi un quad rouge et Mathieu un quad bleu ? On doit calculer $p(R_1 \cap B_2) = \frac{9}{14} \times \frac{5}{13} = \frac{45}{182}$
- 3. Quelle est la probabilité que Mathieu ait un quad rouge ?

 On doit calculer $p(R_1 \cap R_2) + p(B_1 \cap R_2) = \frac{9}{14} \times \frac{8}{13} + \frac{5}{14} \times \frac{9}{13} = \frac{36}{91} + \frac{45}{182} = \frac{72 + 45}{182} = \frac{117}{182} = \frac{9}{14}$

Exercice 2 (5 points)

1. Résoudre: $(3x - 12)(4x - 32) \le 0$

X	$-\infty$		4		8		$+\infty$
3x-12		-	0	+		+	
4x-32		-		-	0	+	
(3x-12)(4x-32)		+	0	-	0	+	
S = [4; 8]							

2. Résoudre : $\frac{3-x}{2x+10} \le 0$

X	$-\infty$		-5		3		$+\infty$
2x+10		-	0	+		+	
3-x		+		+	0	-	
$\frac{3-x}{2x+10}$		-		+	0	-	

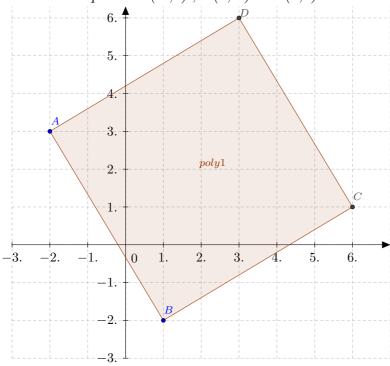
$$S =]-\infty; -5[\cup[3; +\infty[$$

DS 4 seconde 504 4 décembre 2015

3. Résoudre :
$$\frac{3x-5}{(x^2+1)(2-x)} \ge 0$$

(20)	1)(2	ω					
X	$-\infty$		$\frac{5}{3}$		2		$+\infty$
3x-5		-	0	+		+	
$x^2 + 1$		+		+		+	
2-x		+		+	0	-	
$\frac{3x - 5}{(x^2 + 1)(2 - x)}$		-	0	+		-	
$S = \left[\frac{5}{3}; 2\right[$							

On donne les points A(-2;3), B(1;-2) et C(6;1).



- 1. Placer les points dans le repère
- 2. Tracer le parallélogramme ABCD
- 3. Calculer les coordonnées de D pour que ABCD soit un parallélogramme . Les diagonales de ABCD sont [AC] et [BD] et doivent avoir le même milieu . Cherchons les coordonnées du milieu de [AC] :

$$(\frac{-2+6}{2}; \frac{3+1}{2})$$
 donc $(2;2)$

On doit donc avoir
$$:2 = \frac{1+x_D}{2} \iff 4 = 1+x_D \iff x_D = 3$$
 et $2 = \frac{-2+y_D}{2} \iff 4 = -2+y_D \iff y_D = 6$
Donc $D(3:6)$

4. Conjecturer la nature de ABCD . Il semble que ABCD soit un carré

DS 4 seconde 504 4 décembre 2015

5. Démontrer rigoureusement la conjecture . On sait déjà que ABCD est un parallélogramme . Montrons maintenant que c'est un losange et un rectangle , autrement dit qu'il a deux côtés consécutifs égaux et un angle droit . Pour cela , calculons AB , BC et AC .

$$AB = \sqrt{(1+2)^2 + (-2-3)^2} = \sqrt{9+25} = \sqrt{34}$$

$$BC = \sqrt{(6-1)^2 + (1+2)^2} = \sqrt{25+9} = \sqrt{34}$$

$$AC = \sqrt{(6+2)^2 + (1-3)^2} = \sqrt{64+4} = \sqrt{68}$$

On a donc AB = BC et $AB^2 + BC^2 = AC^2$ et par la réciproque de Pythagore , on peut affirmer que ABC est rectangle en B. Conclusion , ABCD est un losange et un rectangle donc c'est un carré

Exercice 4 (3 points)

On donne la droite D d'équation y=-3x+8. Déterminer une équation de la droite D' parallèle à D et passant par E(5;6).

D et D' sont parallèles donc elles ont le même coefficient directeur . Une équation de D' est donc de la forme y=-3x+p . Or E est un point de d' donc $6=-3\times 5+p\iff 6+15=p\iff p=21$. Conclusion , une équation de D' est y=-3x+21

Exercice 5 (2 points)

 $Voici\ un\ algorithme\ en\ langage\ naturel\ .$ L'écrire sur votre feuille dans le langage de votre calculatrice .

Variables

x, y ,z: réels

Début de l'algorithme

Saisir x

Affecter à y la valeur x + 8

Affecter à z la valeur 2y + 4

Sorties:

Afficher z

Prompt x

$$x + 8 \rightarrow y$$

$$2y + 4 \rightarrow z$$

Disp z