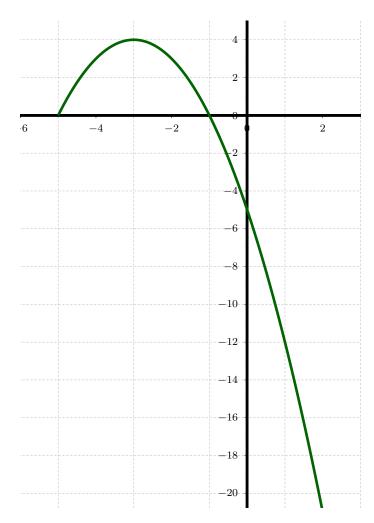
Exercice 1 (6 points)

On donne $f(x) = 4 - (x + 3)^2$

1. Développer
$$f(x) = -x^2 - 6x - 5$$


2. Factoriser
$$f(x) = (-x - 1)(x + 5)$$

3. Résoudre
$$f(x) = 0 \iff x = -5 \text{ ou } x = -1$$

4. Recopier et compléter le tableau de valeurs suivant

X	-5	-4	-3	-2	-1	0	1	2
f(x)	0	3	4	3	0	-5	-12	-21

5. Tracer la courbe de la fonction f

Exercice 2 (5 points)

1. Résoudre : (2x - 8)(5 - x) > 0Par un tableau de signes , S =]4; 5[

2. Résoudre : $(x+5)(x+9) \ge 0$ Par un tableau de signes , $S=]-\infty;-9] \cup [-5;+\infty[$ 3. Résoudre : $\frac{8-x}{7-x} \le 0$

Par un tableau de signes , S=]7;8]

4. Résoudre : $x^2 - 9 \ge 0 \iff (x - 3)(x + 3) \ge 0$

Par un tableau de signes , $S =]-\infty; -3] \cup [3; +\infty[$

Exercice 3 (5 points)

On donne dans un repère orthonormé les points A(8;5), B(-1;6) et C(2;-4)

1. Déterminer par le calcul les coordonnées de D tel que ABCD soit un parallélogramme

On pose D(x;y)

$$\overrightarrow{AB} = \overrightarrow{DC}$$

$$\overrightarrow{AB}(-9;1)$$

$$\overrightarrow{DC}(2-x;-4-y)$$

Donc:
$$x = 11 \text{ et } y = -5$$

$$D(11;-5)$$

2. Soit E défini par $\overrightarrow{BE}=\overrightarrow{AB}-\overrightarrow{BC}$. Déterminer par le calcul les coordonnées de E

On pose E(x;y)

On a:

$$x + 1 = -9 - 3$$
 et $y - 6 = 1 + 10$

$$x = -13 \text{ et } y = 17$$

3. Les droites (AD) et (CE) sont-elles parallèles ? Justifier par le calcul .

$$\overrightarrow{AD}(3;-10)$$

$$\overrightarrow{CE}(-15;21)$$

 $det(\overrightarrow{AD};\overrightarrow{CE})=-87\neq0$ donc les vecteurs ne sont pas colinéaires et les droites (AD) et (CE) ne sont pas parallèles

Exercice 4 (4 points)

Un écureuil prépare ses réserves de nourriture pour l'hiver. Il a au 1er juillet 250 noisettes en stock . Toutes les semaines , il ajoute 30 noisettes à sa réserve .

- 1. Calculer le nombre de noisettes à la fin de l'été , c'est à dire au bout de huit semaines . 490 noisettes
- 2. On donne l'algorithme suivant :

$$X=250$$
 $N=0$ $while ~X < 500 : X=X+30$ $N=N+1$ $print (N)$

(a) Recopier et compléter le tableau ci-dessous en ajoutant le nombre de lignes néces-

	X	N	condition vérifiée
	250	0	vraie
	280	1	vraie
saires:	310	2	vraie
sanes.	340	3	vraie
	370	4	vraie
	520	9	faux

- (b) Quel est l'affichage final? 9
- (c) Comment peut on traduire le résultat de cet algorithme concernant l'écureuil ? L'écureuil aura plus de 500 noisettes au bout de 9 semaines