

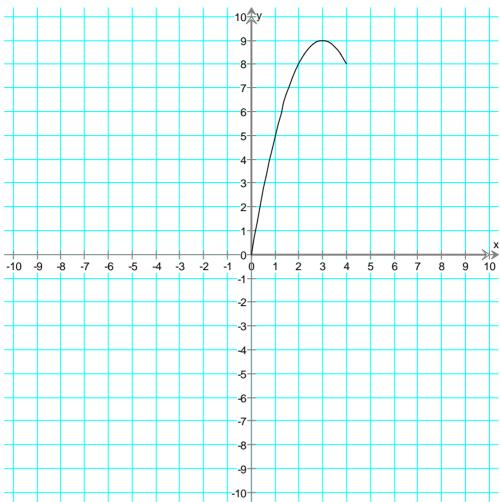
- 1) a) (CH) et (HD) sont perpendiculaires par définition d'un projeté orthogonal. De plus, BC = AH = 2 cm et HD = AD AH = 6 2 = 4 cm = AB = HC. Donc CHD est un triangle rectangle isocèle en H.
 - b) Par énoncé, (AM) est perpendiculaire à (AP). De plus, (AP) est parallèle à (MN) par construction et (AM) est parallèle à (NP) par construction. Donc AMNP est un quadrilatère dont les côtés sont parallèles deux à deux, c'est donc un parallélogramme, de plus il possède un angle droit, c'est donc un rectangle. On obtient automatiquement

NPD rectangle en P. Par Thalès dans le triangle DHC, on a : $\frac{DP}{DH} = \frac{PN}{HC}$, or DH =

 $HC\ d$ 'où : DP = PN . On a bien DPN rectangle isocèle en P .

2) a) l'aire de AMNP est $f(x) = AM \times MN$. Puisque DP = PN = AM = x , on a : MN = 6 - x . D'où : f(x) = x (6 - x). De plus : $9 - (x - 3)^2 = 9 - (x^2 - 6x + 9) = -x^2 + 6x = f(x)$.

Longueur AM, x	0	1	2	2,5	3	4
Aire de AMNP, $f(x)$	0	5	8	8,75	9	8



3) 4) a) x = 1.5 alors f(x) = 7 cm².

b) pour x=3 , c'est-à-dire $AM=3\ cm$.

c) x doit appartenir au segment [2;4].

d) on choisit 8,5 sur l'axe vertical et la droite horizontale qui passe par 8,5 coupe la courbe en deux points .

5) a) on choisit $f(x) = 9 - (x - 3)^2$. Alors , $f(x) \le 9$ si $9 - (x - 3)^2 \le 9$ c'est-à-dire : $-(x - 3)^2 \le 0$ ou encore $(x - 3)^2 \ge 0$. Or ceci est vrai pour tout x car un carré est positif sur R . f(3) = 9 , on vient donc de montrer que f(x) < f(3) ce qui est la définition de f admet un maximum pour x = 3. Si x = 3 alors AMNP est un rectangle tel que AM = 3 et AP = 3 donc AMNP est un carré car rectangle avec deux côtés consécutifs égaux .

b) on garde encore $f(x) = 9 - (x - 3)^2$; On doit donc résoudre : $9 - (x - 3)^2 = \frac{17}{2}$

autrement dit : $9 - \frac{17}{2} - (x - 3)^2 = 0$ c'est-à-dire : $\frac{1}{2} - (x - 3)^2 = 0$. On factorise en

utilisant a^2 - b^2 ce qui donne : $\left(\frac{1}{\sqrt{2}} - (x-3)\right)\left(\frac{1}{\sqrt{2}} + x - 3\right) = 0$ ou encore

 $(\frac{1+3\sqrt{2}}{\sqrt{2}}-x)(\frac{1-3\sqrt{2}}{\sqrt{2}}+x) = 0$ donc les deux solutions sont : $x = \frac{1+3\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}+6}{2}$ et

$$x = \frac{3\sqrt{2} - 1}{\sqrt{2}} = \frac{6 - \sqrt{2}}{2}$$