Fiche méthode : déterminer un domaine de définition

Avec des fractions

Lorsqu'une fonction est définie à l'aide d'une fraction contenant des x au dénominateurs, il faut déterminer les valeurs interdites.

Méthode:

On sait qu'un dénominateur ne peut être nul.

On cherche quelles sont les valeurs de x qui annulent le dénominateur

Ce sont les valeurs interdites

Exemple

Déterminer le domaine de définition de la fonction f définie par $f(x) = \frac{3x+8}{2x-7}$

Le dénominateur est 2x - 7; il ne doit pas être nul

Or 2x - 7 = 0 si $x = \frac{7}{2}$. Donc, $\frac{7}{2}$ est la valeur interdite

Le domaine de définition est donc tous les réels sauf $\frac{7}{2}$

On le note $Df = \mathbb{R} \setminus \left\{ \frac{7}{2} \right\}$

Avec des racines

Une racine est définie uniquement lorsque l'expression sous la racine est positive

Méthode

On repère l'expression sous la racine

Elle doit être positive

On résout l'inéquation

La solution est le domaine de définition

<u>Exemple</u>

Déterminer le domaine de définition de la fonction f définie par $f(x) = \sqrt{3x+9}$

L'expression sous la racine est 3x + 9

Elle doit être positive, on doit donc résoudre : $3x + 9 \ge 0$

$$3x \ge -9$$

$$x \ge -3$$

$$S = [-3; +\infty[$$

Le domaine de définition est donc $Df = [-3; +\infty[$

Si l'expression est plus compliquée, il faut penser à utiliser les méthodes vues dans les fiches méthodes « factorisation », « équations » et « inéquations »

Fiche méthode : déterminer un domaine de définition

Et dans les autres cas

Lorsque la fonction est un simple polynôme , c'est-à-dire , une expression avec des x sans fractions ni racines de x , le domaine de définition est $\mathbb R$

Exemple

$$f(x) = 3x^2 + 8x + 9$$
, Df = \mathbb{R}

$$g(x) = \frac{3}{2}x^3 + 2x + \sqrt{7}$$
 Dg = \mathbb{R} , les fractions et les racines ne sont pas en x.

Exercices

Déterminer le domaine de définition des fonctions suivantes :

$$f(x) = \sqrt{8x + 9}$$

$$g(x) = \frac{2x+9}{3x-12}$$

$$h(x) = x^2 + 8 x + 9$$

$$j(x) = \frac{2x+7}{(x-8)(3x-19)}$$

$$k(x) = \sqrt{(2x-18)(3x-9)}$$

$$m(x) = 3x^2 + 9x + 7$$