Ce qu'il faut revoir

Le cours sur les angles, le radian, les valeurs remarquables, le cercle trigonométrique.

Exercices pour se remettre en route

Exercice 1

 $\overline{\text{Convertir en radians}}: 45^{\circ}, 60^{\circ}, 30^{\circ}, 120^{\circ}, 90^{\circ}$

Exercice 2

Placer sur un cercle trigonométrique les points ayant pour angle au centre :

$$A:\frac{\pi}{3}$$
; $B:-\frac{\pi}{6}$; $C:\frac{2\pi}{3}$; $D:-\frac{11\pi}{6}$

Placer sur un deuxième cercle trigonométrique les points ayant pour angle au centre :

$$E:\frac{\pi}{4}$$
; $F:-\frac{7\pi}{2}$; $G:-\frac{5\pi}{4}$

Exercice 3

Compléter:

$$\cos\left(\frac{\pi}{6}\right) = \cdots$$
; $\sin\left(\frac{\pi}{4}\right) = \cdots$; $\cos\left(\frac{\pi}{3}\right) = \cdots$

En déduire en s'aidant d'un cercle trigonométrique :

$$\cos\left(-\frac{\pi}{6}\right) = \cdots$$
; $\sin\left(\frac{3\pi}{4}\right) = \cdots$; $\cos\left(\frac{2\pi}{3}\right) = \cdots$

Exercice 4

Déterminer sin x sachant que :

$$\cos x = -0.2 et x \in \left] \pi; \frac{3\pi}{2} \right[$$

Exercices plus difficiles

Exercice 5

Soit x un nombre réel.

1) En remarquant que $(\cos x - \sin x)^2 \ge 0$, déduire que :

$$cosx \times sinx \le \frac{1}{2}$$

2) De la même façon, montrer que:

$$-\cos x \times \sin x \le \frac{1}{2}$$

3) En déduire :

$$-\frac{1}{2} \le cosx \times sinx \le \frac{1}{2}$$

L'équation $\cos x \sin x = 1$ a-t-elle une solution ?

Exercice 6

Soient f et g les fonctions définies sur $[0; 2\pi]$ par $f(x) = \cos(x)$ et $g(x) = \sin(x)$.

- 1) Dresser un tableau de valeurs des fonctions f et g
- 2) Tracer dans un même repère les courbes de f et de g

Fiche 13: Trigonométrie

Exercice 7

Soit ABC un triangle dont les trois sommets ont des angles aigus . On trace la hauteur issue de A et on appelle H le pied de cette hauteur . On note AB = c, AC = b, BC = a, AH = h.

- 1) Exprimer $sin\hat{C}$ et $sin\hat{B}$ en fonction des longueurs de la figure
- 2) Exprimer l'aire de ABC à l'aide des longueurs de la figure
- 3) En déduire deux formules de l'aire de ABC en fonction de $sin\hat{C}$ et $sin\hat{B}$
- 4) Démontrer la loi des sinus, c'est-à-dire:

$$\frac{b}{\sin \hat{R}} = \frac{c}{\sin \hat{C}}$$

Exercice 8

Dire si les phrases suivantes sont vraies ou fausses

- 1) Il existe un réel t tel que sin t = 0.9 et cos t = 0.4
- 2) Pour tout réel x , $(\cos x + \sin x)^2 = 1$
- 3) Il existe un réel x tel que $(\cos x + \sin x)^2 = 1$
- 4) Il n'existe pas de réel x tel que $\cos x = \sin x$
- 5) Pour tout réel x , sin(2x) = 2 sin x
- 6) Les réels suivants n'ont pas le même point image sur le cercle trigonométrique :

$$\frac{5\pi}{3} et -\frac{\pi}{3}$$
7) $sin\left(-\frac{\pi}{12}\right) = -sin\left(\frac{\pi}{12}\right)$
8) $sin\frac{9\pi}{7} = -sin\frac{2\pi}{7}$

Exercice 9

En s'aidant d'un cercle trigonométrique et en traçant proprement les angles, exprimer plus simplement :

$$cos(\pi + x)$$
; $cos(\pi - x)$; $sin(\pi + x)$; $sin(\pi - x)$; $cos(\frac{\pi}{2} + x)$; $cos(\frac{\pi}{2} - x)$; $sin(\frac{\pi}{2} + x)$; $sin(\frac{\pi}{2} - x)$