DS 4:6 décembre 2018 Terminale S

Mathématiques

EXERCICE 1 10 points

On considère la fonction f définie sur \mathbb{R} par :

$$f(x) = \frac{1}{2} [(x + (1 - x)e^{2x}].$$

On note $\mathscr C$ la courbe représentative de f dans un repère orthonormal $\left(0,\overrightarrow{\iota},\overrightarrow{J}\right)$, (unité graphique 2 cm)

- 1. a. Déterminer les limites de f en $-\infty$ et en $+\infty$.
 - **b.** Étudier la position de \mathscr{C} par rapport à Δ la droite d'équation $y = \frac{x}{2}$.
- **2.** Montrer que f est dérivable sur \mathbb{R} et calculer f'(x).
- **3.** Soit *u* la fonction définie sur \mathbb{R} par $u(x) = 1 + (1 2x)e^{2x}$.
 - **a.** Étudier le sens de variation de u.

Montrer que l'équation u(x) = 0 possède une solution unique α dans l'intervalle [0, 1].

Déterminer une valeur décimale approchée par excès de α à 10^{-2} près.

- **b.** Déterminer le signe de u(x) suivant les valeurs de x.
- **4.** Étudier le sens de variation de *f* puis dresser son tableau de variations.
- **5.** Tracer la droite Δ et la courbe \mathscr{C}

EXERCICE 2 10 points

On considère la fonction f définie sur \mathbb{R} par :

$$f(x) = \frac{1}{2}x^2 - x + \frac{3}{2}.$$

Soit a un réel positif.

On définit la suite (u_n) par $u_0 = a$ et, pour tout entier naturel $n: u_{n+1} = f(u_n)$.

Le but de cet exercice est d'étudier le comportement de la suite (u_n) lorsque n tend vers $+\infty$, suivant différentes valeurs de son premier terme $u_0 = a$.

- 1. À l'aide de la calculatrice, conjecturer le comportement de la suite (u_n) lorsque n tend vers $+\infty$, pour a=2,9 puis pour a=3,1.
- **2.** Dans cette question, on suppose que la suite (u_n) converge vers un réel ℓ .
 - **a.** En remarquant que $u_{n+1} = \frac{1}{2}u_n^2 u_n + \frac{3}{2}$, montrer que $\ell = \frac{1}{2}\ell^2 \ell + \frac{3}{2}$.
 - **b.** Montrer que les valeurs possibles de ℓ sont 1 et 3.
- **3.** Dans cette question, on prend a = 2,9.
 - **a.** Montrer que f est croissante sur l'intervalle $[1; +\infty[$.
 - **b.** Montrer par récurrence que, pour tout entier naturel n, on a : $1 \le u_{n+1} \le u_n$.

- **c.** Montrer que (u_n) converge et déterminer sa limite.
- **4.** Dans cette question, on prend a = 3, 1 et on admet que la suite (u_n) est croissante.
 - **a.** À l'aide des questions précédentes montrer que la suite (u_n) n'est pas majorée.
 - **b.** En déduire le comportement de la suite (u_n) lorsque n tend vers $+\infty$.
 - **c.** L'algorithme suivant calcule le plus petit rang p pour lequel $u_p > 10^6$. Recopier et compléter cet algorithme.

P est un nombre entier et U est un nombre réel.

$P \leftarrow 0$	
U	
Tant que	
<i>P</i> ←	
<i>U</i> ←	
Fin Tant que	
1	