DS 6:7 mars 2019 Terminale S

Mathématiques

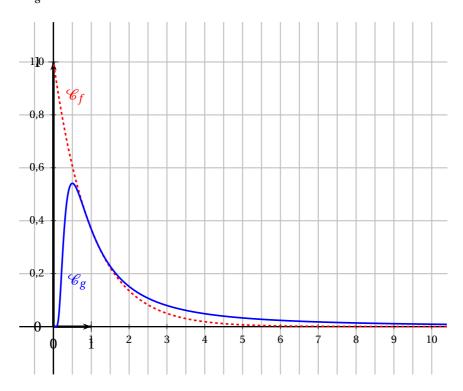
EXERCICE 1 10 points

Soient f et g les fonctions définies sur]0; $+\infty[$ par

$$f(x) = e^{-x}$$
 et $g(x) = \frac{1}{x^2}e^{-\frac{1}{x}}$.

On admet que f et g sont dérivables sur]0; $+\infty[$. On note f' et g' leurs fonctions dérivées respectives.

Les représentations graphiques de f et g dans un repère orthogonal, nommées respectivement \mathcal{C}_f et \mathcal{C}_g sont données ci-dessous :



Partie A - Conjectures graphiques

Dans chacune des questions de cette partie, aucune explication n'est demandée.

- 1. Conjecturer graphiquement une solution de l'équation f(x) = g(x) sur]0; $+\infty[$.
- **2.** Conjecturer graphiquement une solution de l'équation g'(x) = 0 sur]0; $+\infty[$.

Partie B – Étude de la fonction g

- **1.** Calculer la limite de g(x) quand x tend vers $+\infty$.
- **2.** On admet que la fonction g est strictement positive sur]0; $+\infty[$. Soit h la fonction définie sur]0; $+\infty[$ par $h(x) = \ln(g(x))$.

a. Démontrer que, pour tout nombre réel *x* strictement positif,

$$h(x) = \frac{-1 - 2x \ln x}{x}.$$

- **b.** Calculer la limite de h(x) quand x tend vers 0.
- **c.** En déduire la limite de g(x) quand x tend vers 0.
- 3. Démontrer que, pour tout nombre réel x strictement positif,

$$g'(x) = \frac{e^{-\frac{1}{x}} \left(1 - 2x\right)}{x^4}.$$

4. En déduire les variations de la fonction g sur]0; $+\infty[$.

Partie C – Aire des deux domaines compris entre les courbes \mathscr{C}_f et \mathscr{C}_g

1. Démontrer que la point A de coordonnées (1 ; e^{-1}) est un point d'intersection de \mathscr{C}_f et \mathscr{C}_g .

On admet que ce point est l'unique point d'intersection de \mathscr{C}_f et \mathscr{C}_g , et que \mathscr{C}_f est au dessus de \mathscr{C}_g sur l'intervalle]0 ; 1[et en dessous sur l'intervalle]1 ; $+\infty$ [.

2. Soient a et b deux réels strictement positifs. Démontrer que

$$\int_{a}^{b} (f(x) - g(x)) dx = e^{-a} + e^{-\frac{1}{a}} - e^{-b} - e^{-\frac{1}{b}}.$$

3. Démontrer que

$$\lim_{a \to 0} \int_{c}^{1} (f(x) - g(x)) dx = 1 - 2e^{-1}.$$

4. On admet que

$$\lim_{a \to 0} \int_a^1 \left(f(x) - g(x) \right) dx = \lim_{b \to +\infty} \int_1^b \left(g(x) - f(x) \right) dx.$$

Interpréter graphiquement cette égalité.

EXERCICE 2 10 points

On définit la suite de nombres complexes (z_n) de la manière suivante : $z_0 = 1$ et, pour tout entier naturel n,

$$z_{n+1} = \frac{1}{3}z_n + \frac{2}{3}i.$$

On se place dans un plan muni d'un repère orthonormé direct $(0, \vec{u}, \vec{v})$.

Pour tout entier naturel n, on note A_n le point du plan d'affixe z_n .

Pour tout entier naturel n, on pose $u_n = z_n - i$ et on note B_n le point d'affixe u_n . On note C le point d'affixe i.

1. Exprimer u_{n+1} en fonction de u_n , pour tout entier naturel n.

2. Démontrer que, pour tout entier naturel n,

$$u_n = \left(\frac{1}{3}\right)^n (1-i).$$

- **3. a.** Pour tout entier naturel n, calculer, en fonction de n, le module de u_n .
 - b. Démontrer que

$$\lim_{n\to+\infty} |z_n-\mathrm{i}| = 0.$$

- c. Quelle interprétation géométrique peut-on donner de ce résultat?
- **4. a.** Soit n un entier naturel. déterminer un argument de u_n .
 - **b.** Démontrer que, lorsque n décrit l'ensemble des entiers naturels, les points B_n sont alignés.
 - **c.** Démontrer que, pour tout entier naturel n, le point A_n appartient à la droite d'équation réduite :

$$y = -x + 1$$
.