corrigé DS 4 : 6 décembre 2018 Terminale S

Mathématiques

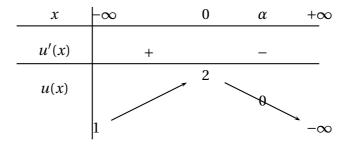
EXERCICE 1 10 points
Partie B

1. $f(x) = \frac{1}{2} [x + (1-x)e^{2x}]$

- **a.** On a (croissance comparée) $\lim_{x \to -\infty} x e^{2x} = 0$, d'où $\lim_{x \to -\infty} f(x) = -\infty$. $f(x) = \frac{1}{2}(xe^{-2x} + 1 x)$; la limite de xe^{-2x} en $+\infty$ est égale à 0 et $\lim_{x \to +\infty} xe^{-2x} = -\infty$. Conclusion : $\lim_{x \to +\infty} f(x) = -\infty$.
- **b.** On calcule la différence $d(x) = f(x) \frac{x}{2} = \frac{1}{2}(1-x)e^{2x}$. On sait que $\frac{1}{2}e^{2x}$ est positif pour tout réel x . Donc d(x) est du signe de 1-x . Conclusion (\mathscr{C}) est au dessus de Δ sur $]-\infty;1[$ et en dessous sur $]1;+\infty[$
- **2.** x, (1-x) et e^{2x} sont des fonctions dérivables sur \mathbb{R} , donc f fonction obtenue par somme et produit de ces fonctions dérivables sur \mathbb{R} est dérivable sur \mathbb{R} .

$$f'(x) = \frac{1}{2}x + \left(\frac{1-x}{2}\right)e^{2x}\;;\; f'(x) = \frac{1}{2} - \frac{1}{2}e^{2x} + 2e^{2x}\left(\frac{1-x}{2}\right) = \frac{1}{2} + \frac{e^{2x}}{2}(1-2x) = \frac{1}{2}\left[1 + (1-2x)e^{2x}\right].$$

- **3.** $u(x) = 1 + (1 2x)e^{2x}$
 - **a.** $u'(x) 2e^{2x} + 2(1-x)e^{2x} = -4xe^{2x}$ qui est du signe de -x. D'où le tableau de variations :

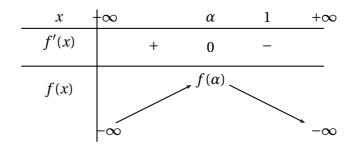


b. On a u(0) = 1 + 1 = 2 et u(1) = 1 - e < 0. Donc sur l'intervalle [0; 1], la fonction u est : dérivable; monotone décroissante; u(0) > 0 et u(1) < 0.

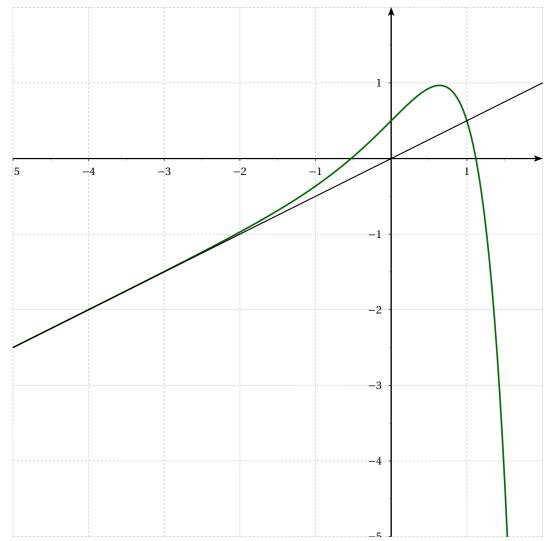
Conclusion : il existe un réel unique α de l'intervalle [0 ; 1] tel que $u(\alpha)=0$.

La calculatrice livre : $u(0,63) \approx 0.08$ et $u(0,64) \approx -0.007$. Donc d'après le théorème ci-dessus $0.63 < \alpha < 0.64$. Réponse $\alpha \approx 0.64$ à 10^{-2} près par excès.

- **c.** Le tableau donne donc le signe de $u: x < \alpha \iff u(x) > 0$ et $x > \alpha \iff u(x) < 0$
- **4.** On a $f'(x) = \frac{1}{2}u(x)$: le signe de f' est celui de u. On a donc le tableau de variations :



5. Voici la courbe:



EXERCICE 2 10 points

- 1. Avec a = 2,9 il semble que la suite (u_n) soit décroissante et convergente vers 1. Avec a = 3,1 il semble que la suite (u_n) soit croissante et tende vers $+\infty$.
- **2. a.** Les termes u_n et u_{n+1} ayant pour limite ℓ , on a donc $\ell = \frac{1}{2}\ell \ell + \frac{3}{2}$.
 - **b.** $\ell = \frac{1}{2}\ell \ell + \frac{3}{2} \iff 2\ell = \ell^2 2\ell + 3 \iff \ell^2 4\ell + 3 = 0$ 1 est solution évidente de cette équation que l'on peut écrire $(\ell - 1)(\ell - 3) = 0$.

1 est solution évidente de cette équation que l'on peut écrire $(\ell - 1)(\ell - 3) = 0$. L'autre solution est donc $\ell = 3$.

Si elle converge cela ne peut être que vers 1 ou 3.

3. a. On prend a = 2, 9. f est dérivable sur \mathbb{R} et sur cet intervalle :

f'(x) = x - 1; donc $f'(x) \ge 0$ pour $x \ge 1$: la fonction f est croissante sur $[1; +\infty[$.

b. Initialisation: $u_0 = 2.9$ et $u_1 : \frac{1}{2} \times 2.9^2 - 2.9 + \frac{3}{2} = 2.805$.

On a bien $1 \le u_1 \le u_0$.

Hérédité : supposons que pour $n \in \mathbb{N}$, on ait : $1 \le u_{n+1} \le u_n$:

puisque la fonction f est croissante sur $[1; +\infty[$, les images par f des trois termes de cet encadrement sont rangées dans le même ordre :

$$f(1) \leqslant f(u_{n+1}) \leqslant f(u_n).$$

Soit avec $f(1) = \frac{1}{2} - 1 + \frac{3}{2} = 1$: $1 \le u_{n+2} \le u_{n+1}$: l'encadrement est vrai au rang n+1.

On a montré que l'encadrement est vrai au rang 0 et que s'il est vrai au rang n, il l'est aussi au rang n+1.

D'après le principe de récurrence on a donc démontré que :

pour tout entier naturel n, on a : $1 \le u_{n+1} \le u_n$.

c. D'après le résultat précédent la suite (u_n) décroit et est minorée par 1 : elle est donc, d'après le théorème de la convergence monotone, convergente vers un nombre $\ell \geqslant 1$.

De plus a=2,9 est le premier terme de la suite qui est décroissante, donc $\ell < 2,9$. Les deux seules valeurs possibles pour la limite sont 1 et 3 (question 2.b.); ça ne peut pas être 3 donc $\ell = 1$.

a. Si la suite est majorée, comme elle est croissante, elle est convergente (théorème de la convergence monotone).

On a vu que si la suite converge ce ne peut être que vers 1 ou 3, ce qui n'est pas possible puisque le premier terme est $u_0 = 3, 1 > 3$ et que la suite est croissante : cette suite n'est donc pas majorée.

b. Par conséquent on a $\lim_{n\to+\infty} u_n = +\infty$.

c.

$$U \leftarrow 3,1$$
Tant que $U \le 10^6$

$$P \leftarrow P + 1$$

$$U \leftarrow \frac{1}{2}U^2 - U + \frac{3}{2}$$

Fin Tant que

Rem. L'algorithme s'arrête à u_9 .