Démonstration du théorème du point fixe

Théorème

Soit une suite (u_n) définie par $u_{n+1} = f(u_n)$ avec f une fonction continue. Si la suite (u_n) converge vers un réel m alors m = f(m).

Démonstration

Le principe

On montre que $f(u_n)$ et u_n ont la même limite en utilisant la limite de fonctions composées et la définition de la continuité d'une fonction en un point .

Pour la retenir

L'écrire « en cascade »

Les pré requis utilisés dans cette démonstration

La définition de la continuité d'une fonction en un point

La limite de fonctions composées

L'unicité de la limite

La démonstration

Soit la suite (u_n) définie par $u_{n+1} = f(u_n)$ avec f une fonction continue.

On suppose que la suite (u_n) converge vers un réel m.

$$\lim_{x \to m} f(x) = f(m) \text{ car f est continue}$$
Et $\lim_{x \to m} u_n = m$

Donc $\lim_{n\to+\infty} f(u_n) = f(m)$ par la limite de fonctions composées

De plus ,
$$\lim_{n\to +\infty}u_n=\lim_{n\to +\infty}u_{n+1}=m$$
 car $\lim_{n\to +\infty}n=\lim_{n\to +\infty}n+1=+\infty$
Donc $\lim u_n=\lim f(u_n)=m$

Et donc par unicité de la limite : f(m) = m.

Ecriture en cascade:

