1 Théorèmes de convergence

A retenir

- 1. Si une suite (u_n) est croissante et convergente vers L alors (u_n) est majorée par L
- 2. Toute suite croissante non majorée tend vers $+\infty$

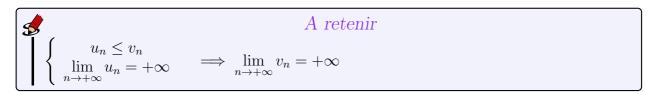
Le principe

On utilise un raisonnement par l'absurde pour la première . Pour la deuxième démonstration , les définitions suffiront .

Les démonstrations

es ac	emonstrations
1. Ra	aisonnons par l'absurde :
	\bullet Les hypothèses : Supposons que (u_n) n'est pas majorée par L alors
	• On peut donc trouver un intervalle ouvert qui contient L :
	\bullet La suite est croissante donc pour $n>p$, on a :
	• La suite (u_n) converge vers L donc par définition u_n appartient à tout intervalle ouvert contenant L donc :
	• Contradiction entre $u_n > u_p$ et $u_n \in]L-1; u_p[$. Donc l'hypothèse de départ est fausse et donc (u_n) est majorée par L .
2. Sc	pit une suite (u_n) croissante non majorée.
	• (u_n) non majorée donc pour tout réel A , il existe p tel que $u_p > A$ • La suite est croissante donc pour tout $n > p$, on a :
	• Par définition , puisque pour tout réel A , u_n appartient à un intervalle ouvert de la forme $]A; +\infty[$, alors

2 Théorème de comparaison



Le principe

On utilise les définitions

La démonstration

$\lim_{n \to +\infty} u_n = +\infty \text{ donc } \dots$
$n \rightarrow +\infty$

- $\bullet \ u_n \leq v_n$ à partir d'un certain rang , donc il existe un entier p à partir duquel $u_n \leq v_n$

3 Suite géométrique

A retenir

Une suite géométrique de raison strictement supérieure à 1 tend vers ∞ .

Le principe

On va utiliser le théorème de comparaison

La démonstration

•	Soit (u_n) une suite géométrique de raison q strictement supérieure à 1 . Alors , on peur
	prendre a réel strictement positif et poser $q = a+1$. On a donc : $u_n = u_0 q^n = u_0 (1+a)^n$

• On va montrer que $\lim_{n\to+\infty} (1+a)^n = +\infty$

	15 1 1 5
	— Montrons d'abord que $(1+a)^n \ge 1 + na$. On va procéder par récurrence :
	* Initialisation : pour $n=1$, c'est immédiat .
	* Hérédité :
	$-\lim_{n\to+\infty}1+na=\dots$
	– Par le théorème de comparaison , on a alors : $\lim_{n \to +\infty} (1+a)^n = +\infty$
•	Etudions maintenant la limite de (u_n) . Si $u_0 > 0$, alors
	Si $u_0 < 0$, alors