Exercice 1

1) $I = \int_0^p \cos^4 x dx$. Commençons par linéariser

$$\cos^{4} x = \left(\frac{e^{ix} + e^{-ix}}{2}\right)^{4} = \frac{1}{16} \left(e^{4ix} + 4e^{2ix} + 6 + 4e^{-2ix} + e^{-4ix}\right) = \frac{1}{16} \left(2\cos 4x + 8\cos 2x + 6\right) = \frac{1}{8} \cos 4x + \frac{1}{2} \cos 2x + \frac{3}{8} \text{ Donc I} = \frac{1}{8} \int_{0}^{p} \cos 4x dx + \frac{1}{2} \int_{0}^{p} \cos 2x dx + \frac{3}{8} \int_{0}^{p} 1 dx = \frac{1}{8} \left[\frac{1}{4} \sin 4x\right]_{0}^{p} + \frac{1}{2} \left[\frac{1}{2} \sin 2x\right]_{0}^{p} + \frac{3}{8} [x]_{0}^{p} = \frac{3}{8} p$$

2)
$$I = \int_{0}^{p} \sin^{5} x dx$$
. Commençons par linéariser

$$\sin^{5} x = \left(\frac{e^{ix} - e^{-ix}}{2i}\right)^{5} = \frac{1}{32i} \left(e^{5ix} - 5e^{3ix} + 10e^{ix} - 10e^{-ix} + 5e^{-3ix} - e^{-5ix}\right) = \frac{1}{32i} (2i\sin 5x - 10i\sin 3x + 20i\sin x) = \frac{1}{16} \sin 5x - \frac{5}{16} \sin 3x + \frac{5}{8} \sin x \text{ . Donc I} = \left[-\frac{1}{16} \times \frac{1}{5} \cos 5x + \frac{5}{48} \cos 3x - \frac{5}{8} \cos x\right]_{0}^{p} = -\frac{1}{80} (-2) + \frac{5}{48} (-2) - \frac{5}{8} (-2) = \frac{16}{15}$$

Exercice 2

Regardons d'abord le signe de f : sur [1;4], $f(x) \ge 0$.

Donc A =
$$\int_{1}^{4} 3x - 3dx = \left[\frac{3}{2} x^{2} - 3x \right]_{1}^{4} = 24 - 12 - \frac{3}{2} + 3 = \frac{27}{2} \text{ u.a.}$$

Exercice 3

$$\frac{1}{1 - (-1)} \int_{-1}^{1} 2x + 3dx = \frac{1}{2} \left[x^{2} + 3x \right]_{-1}^{1} = \frac{1}{2} \left(4 - (-2) \right) = 3$$

Exercice 4

1) On a : y = 1 (x - 0) + 1 donc y = x + 1. Etudions la position relative de la courbe et de la tangente . Soit $g(x) = e^x - x - 1$. Le but est d'étudier le signe de g. On va étudier les variations de g: $g'(x) = e^x - 1$. De plus $e^x > 1$ si x > 0. On a donc le tableau suivant :

X	- ∞		0	+∞
g'(x)		-	0	+
g(x)				
	_			-
			0	

Donc par lecture du tableau de variations , $g(x) \ge 0$. On en conclut que $e^x \ge x+1$ donc la courbe est au dessus de sa tangente .

2) On a :
$$e^x \ge x + 1$$
 donc par conservation de l'ordre : $\int_{-1}^{1} e^x dx \ge \int_{-1}^{1} x + 1 dx$ et
$$\int_{-1}^{1} x + 1 dx = \left[\frac{x^2}{2} + x \right]_{-1}^{1} = \frac{1}{2} + 1 - \frac{1}{2} + 1 = 2$$
 d'où l'inégalité demandée .

Exercice 5

1) Par la même méthode que dans l'ex 4, on a $e^x \ge x + 1$ pour tout x. En particulier, on peut poser $x = -\ln t$. Donc $e^{-\ln t} \ge -\ln t + 1$ pour $t \in [0; +\infty[$. On obtient ainsi:

$$e^{\ln(\frac{1}{t})} \ge -\ln t + 1$$
 et $\frac{1}{t} + \ln t \ge 1$ pour $t \in (0; +\infty)$.

2) Soit $g(x) = (x + 1) \ln x$.

g'(x) =
$$\ln x + \frac{x+1}{x} = \ln x + 1 + \frac{1}{x} > 0$$
 par 1) donc g est croissante sur $]0;+\infty[$.

$$\lim_{x \to +\infty} (x+1) \ln x = +\infty \text{ et } \lim_{x \to 0} (x+1) \ln x = -\infty.$$

- 3) C'est l'aire du domaine compris entre l'axe des abscisses , la courbe de g et les droites d'équation x = n et x = n + 1.
- 4) On a: $n \le x \le n+1$, et g croissante donc $g(n) \le g(x) \le g(n+1)$.

Par conservation de l'ordre :
$$\int_{n}^{n+1} g(n) dx \le u_n \le \int_{n}^{n+1} g(n+1) dx$$
 d'où :

$$g(n)\int_{n}^{n+1} dx \le u_n \le g(n+1)\int_{n}^{n+1} dx$$

et
$$g(n)[x]_n^{n+1} \le u_n \le g(n+1)[x]_n^{n+1}$$

et
$$g(n) \leq u_n \leq g(n{+}1$$
) pour tout n .

On a donc aussi :
$$-g(n+2) \le -u_{n+1} \le -g(n+1)$$

et donc :
$$u_n - u_{n+1} \leq 0$$
 donc la suite (u_n) est croissante .

De plus $g(n) \le u_n$ et $\lim_{n \to +\infty} g(n) = +\infty$ donc par le théorème de majoration :

$$\lim_{n \to +\infty} u_n = +\infty \text{ et la suite } (u_n) \text{ diverge }.$$

Exercice 6

1) Calculons $f(x) - (x - 2) = e^{1-x}$. De plus: $\lim_{x \to -\infty} e^{1-x} = 0$.

Donc la droite d'équation y = x - 2 est asymptote à la courbe en $+\infty$.

De plus $e^{1-x} > 0$ donc la courbe est au-dessus de l'asymptote.

2)
$$\int_0^8 f(x) - (x-2)dx = \int_0^8 e^{1-x} dx = \left[-e^{1-x} \right]_0^8 = -e^{-7} + e$$
 u.a

Exercice 7

1)
$$\int_{1}^{2} \frac{2x+1}{x^{2}+x-1} dx = \left[\ln(x^{2}+x-1)\right]_{1}^{2} = \ln 5 - \ln 1 = \ln 5$$

2)
$$\int_{-\frac{p}{4}}^{\frac{p}{3}} \sin x \cos x dx = \left[\frac{\sin^2 x}{2} \right]_{-\frac{p}{4}}^{\frac{p}{3}} = \frac{3}{8} - \frac{2}{8} = \frac{1}{8}$$

Corrigé intégration

Exercice 8

1)
$$\int_{-1}^{1} (3x-1)e^{x+2}$$
. On pose $u = 3 \times -1$ et $v' = e^{x+2}$ on obtient $u' = 3$ et $v = e^{x+2}$. D'où:

$$\int_{-1}^{1} (3x-1)e^{x+2} = \left[(3x-1)e^{x+2} \right]_{-1}^{1} - \int_{-1}^{1} 3e^{x+2} dx = 2e^{3} + 4e - 3\left[e^{x+2} \right]_{-1}^{1} = 2e^{3} + 4e - 3e^{3} + 3e = -e^{3} + 7e$$

2)
$$\int_{1}^{e} x \ln x dx$$
. On pose $u = \ln x$ et $v' = x$; on obtient $u' = 1/x$ et $v = x^{2}/2$. D'où:

$$\int_{1}^{e} x \ln x dx = \left[\frac{x^{2}}{2} \ln x \right]^{e} - \int_{1}^{e} \frac{x}{2} dx = \frac{e^{2}}{2} - \left[\frac{x^{2}}{4} \right]^{e} = \frac{e^{2}}{2} - \frac{e^{2}}{4} + \frac{1}{4} = \frac{e^{2} + 1}{4}$$

3)
$$\int_0^p x \cos x dx$$
. On pose $u = x$ et $v' = \cos x$; on obtient $u' = 1$ et $v = \sin x$. D'où:
$$\int_0^p x \cos x dx = [x \sin x]_0^p - \int_0^p \sin x dx = [\cos x]_0^p = -2$$

4)
$$\int_{-1}^{2} (3x+1)e^{-x} dx$$
. On pose $u = 3x + 1$ et $v' = e^{-x}$; on obtient : $u' = 3$ et $v = -e^{-x}$. D'où
$$\int_{-1}^{2} (3x+1)e^{-x} dx = \left[-(3x+1)e^{-x} \right]_{-1}^{2} - \int 3(-e^{-x}) dx = -7e^{-2} - 2e - 3\left[e^{-x} \right]_{-1}^{2} = -7e^{-2} - 2e - 3e^{-2} + 3e$$
$$= -10e^{-2} + e$$