La formule de Wallis

Soit n un entier naturel . On pose $I_n = \int_0^{\frac{p}{2}} \sin^n x dx$.

- 1) Calculer I_0 et I_1 .
- 2) A l'aide d'une intégration par parties , montrer que , pour tout $n \ge 2$, on a :

$$I_n = \frac{n-1}{n} I_{n-2} \tag{1}$$

- 3) En déduire I_2 , I_3 , I_4 et I_5 .
- 4) a) Démontrer par récurrence que : pour $n \ge 1$ on a : $I_{2n} = \frac{1 \times 3 \times 5 \times ... \times (2n-1)}{2 \times 4 \times 6 \times ... \times 2n} \times \frac{p}{2}$.

b) pour
$$n \ge 1$$
, on a : $I_{2n+1} = \frac{2 \times 4 \times 6 \times ... \times 2n}{1 \times 3 \times 5 \times ... \times (2n-1)} \times \frac{1}{2n+1}$

- 5) a) Pour $x \in [0; \frac{p}{2}]$, comparer sin n x et sin $^{n+1}$ x . En déduire que la suite (I_n) est décroissante .
 - b) A l'aide de l'égalité (1) , établir alors l'encadrement : $\frac{n}{n+1}I_{n-1} \le I_n \le I_{n-1}$, pour $n \ge 1$.
 - c) En déduire que $\lim_{n \to +\infty} \frac{I_{2n+1}}{I_{2n}} = 1$.
- 6) Démontrer la formule de Wallis : si on pose $w_n = \left(\frac{2 \times 4 \times 6 \times ... \times 2n}{1 \times 3 \times 5 \times ... \times (2n-1)}\right)^2 \times \frac{1}{2n+1}$ pour $n \ge 1$ alors $\lim_{n \to +\infty} w_n = \frac{p}{2}$.