Corrigé limites logarithme népérien

1)
$$f(x) = \frac{1}{x} - \ln x$$
. $\lim_{x \to +\infty} \frac{1}{x} = 0$ et $\lim_{x \to +\infty} \ln x = +\infty$ donc $\lim_{x \to +\infty} f(x) = -\infty$.
$$f(x) = \frac{1}{x} - \ln x = \ln x \left(\frac{1}{x \ln x} - 1 \right)$$
. $\lim_{x \to 0} x \ln x = 0^-$ par croissance comparée donc
$$\lim_{x \to 0} \frac{1}{x \ln x} - 1 = -\infty$$
 et $\lim_{x \to 0} \ln x = -\infty$ donc $\lim_{x \to 0} f(x) = +\infty$. La courbe admet donc une asymptote verticale d'équation $x = 0$.

2)
$$f(x) = \frac{\ln x + 2}{\ln x - 1} = \frac{\ln x \left(1 + \frac{2}{\ln x}\right)}{\ln x \left(1 - \frac{1}{\ln x}\right)} = \frac{1 + \frac{2}{\ln x}}{1 - \frac{1}{\ln x}}$$
.

Or $\lim_{x \to +\infty} \ln x = +\infty$ donc $\lim_{x \to +\infty} 1 + \frac{2}{\ln x} = \lim_{x \to +\infty} 1 - \frac{1}{\ln x} = 1$. D'où: $\lim_{x \to +\infty} f(x) = 1$ et la courbe de f admet une asymptote horizontale d'équation y = 1

3)
$$f(x) = x^2 + x - 4 - \ln x = \ln x \left(\frac{x^2}{\ln x} + \frac{x}{\ln x} - \frac{4}{\ln x} - 1 \right)$$
.

 $\lim_{x \to +\infty} \frac{x^2}{\ln x} = \lim_{x \to +\infty} \frac{x}{\ln x} = +\infty \text{ par croissance compar\'e }.$

 $\lim_{x \to +\infty} \frac{4}{\ln x} = 0 \text{ et } \lim_{x \to +\infty} \ln x = +\infty \text{ donc } \lim_{x \to +\infty} f(x) = +\infty \text{ .}$

4)
$$f(x) = \frac{\ln x - 3x}{2x^3} = \frac{1}{2} \times \frac{\ln x}{x^3} - \frac{3}{2x^2}$$
.

 $\lim_{x \to +\infty} \frac{\ln x}{x^3} = 0 \text{ par croissance comparée et } \lim_{x \to +\infty} \frac{3}{2x^2} = 0 \text{ d'où } \lim_{x \to +\infty} f(x) = 0.$

Donc la courbe de f admet une asymptote horizontale d'équation y = 0

5)
$$f(x) = \frac{\ln x}{\sqrt{x}} = \frac{\ln(\sqrt{x})^2}{\sqrt{x}} = 2\frac{\ln \sqrt{x}}{\sqrt{x}}$$
 et $\lim_{x \to +\infty} \frac{\ln \sqrt{x}}{\sqrt{x}} = 0$ par croissance comparée et donc

 $\lim_{x \to 0} f(x) = 0$ et la courbe de f admet une asymptote horizontale d'équation y = 0.

Attention, la croissance comparée n'est pas utilisable directement car la puissance de x doit être un entier naturel (ici, $n = \frac{1}{2}$ non entier)

6)
$$f(x) = \ln(\ln x) .$$

 $\lim_{x \to +\infty} \ln x = +\infty \text{ et } \lim_{u \to +\infty} \ln u = +\infty \text{ donc } \lim_{x \to +\infty} f(x) = +\infty.$

 $\lim_{x\to 1} \ln x = 0$ et $\lim_{u\to 0} \ln u = -\infty$ donc $\lim_{x\to 1} f(x) = -\infty$. La courbe admet donc une asymptote verticale d'équation x = 1.

7)
$$f(x) = \ln(1 - 2x)$$
 est définie sur $-\infty; \frac{1}{2}$

 $\lim_{x\to\infty} 1 - 2 \ x = +\infty \ \text{ et } \lim_{u\to+\infty} \ln u = +\infty \ \text{ donc } \lim_{x\to-\infty} f(x) = +\infty \ .$ $\lim_{x\to\frac12^-} 1 - 2 \ x = 0^+ \ \text{ et } \lim_{u\to0} \ln u = -\infty \ \text{ donc } \lim_{x\to\frac12^-} f(x) = -\infty \ .$ La courbe admet donc une

asymptote verticale d'équation $x = \frac{1}{2}$.

Corrigé limites logarithme népérien

8)
$$f(x) = \ln(x^2 + x + 1)$$

$$\lim_{x \to +\infty} x^2 + x + 1 = +\infty \text{ et } \lim_{u \to +\infty} \ln u = +\infty \text{ donc } \lim_{x \to +\infty} f(x) = +\infty \text{ } \lim_{x \to -\infty} x^2 + x + 1 =$$

$$\lim_{x \to -\infty} x^2 \left(1 + \frac{1}{x} + \frac{1}{x^2} \right) = +\infty \text{ et } \lim_{u \to +\infty} \ln u = +\infty \text{ donc } \lim_{x \to -\infty} f(x) = +\infty$$

$$9) \quad f(x) = \ln\left(1 + \frac{1}{x}\right)$$

 $\lim_{x\to +\infty} 1 + \frac{1}{x} = 1 \text{ et ln } 1 = 0 \text{ donc } \lim_{x\to +\infty} f(x) = 0 \text{ et la courbe de f admet une asymptote}$ horizontale d'équation y=0.

 $\lim_{x\to 0} 1 + \frac{1}{x} = +\infty$ et $\lim_{u\to +\infty} \ln u = +\infty$ donc $\lim_{x\to 0} f(x) = +\infty$. La courbe admet donc une asymptote verticale d'équation x=0.

10)
$$f(x) = \ln\left(\frac{x-5}{x+2}\right)$$
 définie sur $]-\infty;-2[\cup]5;+\infty[$.

$$\lim_{x \to -\infty} \frac{x-5}{x+2} = \frac{1-\frac{5}{x}}{1+\frac{2}{x}} = 1 \text{ et ln } 1 = 0 \text{ donc } \lim_{x \to -\infty} f(x) = 0 \text{ et la courbe de f admet une}$$

asymptote horizontale d'équation y = 0.

 $\lim_{x \to -2^{-}} \frac{x-5}{x+2} = +\infty \text{ et } \lim_{u \to +\infty} \ln u = +\infty \text{ donc } \lim_{x \to -2^{-}} f(x) = +\infty \text{ La courbe admet donc une asymptote verticale d'équation } x = -2.$