1 Divisibilité

Exercice 1

- 1. Déterminer tous les diviseurs entiers naturels de 21
- 2. Déterminer le nombre de multiples de 17 compris entre 2000 et 3000.
- 3. Déterminer les entiers naturels n tels que 11 divise n+5
- 4. Déterminer les entiers naturels n tels que n + 5 divise 11

Exercice 2

- 1. Démontrer que la somme de deux entiers de même parité est paire
- 2. Démontrer que la somme de deux entiers impairs consécutifs est un multiple de 4

Astuce

Fiche méthode!

Exercice 3

- 1. Déterminer les entiers naturels n tels que n-4 divise n+7: n-4 divise n-4 et n+7 donc n-4 divise n+7-(n+4) donc
- 2. Déterminer les entiers naturels n tels que 2n-5 divise n+3:
- 3. Déterminer les entiers naturels n tels que n-3 divise 2n+12
- 4. Déterminer les entiers naturels n tels que 3n + 7 divise 5n + 15

Exercice 4

- 1. Déterminer les couples (x;y) d'entiers naturels tels que (x-3)(y+5)=6
- 2. Déterminer les couples (x;y) d'entiers naturels tels que $x^2 = y^2 + 13$.

2 Division euclidienne

Exercice 5

- 1. Ecrire la division euclidienne de 363 par 10 :
- 2. En déduire la division euclidienne de 363 par 8 :
- 3. En déduire la division euclidienne de -363 par 10 :
- 4. On sait que dans la division euclidienne de l'entier naturel a par 225, le reste est égal à 136. Quel est le reste de la division euclidienne de a par 75?

Astuce

Fiche méthode!

Exercices maison divisibilité

Exercice 6

Soit n un entier naturel . Déterminer selon les valeurs de n le reste de la division euclidienne de 4n+27 par n+5

Exercice 7

Soit n un entier naturel . Déterminer selon les valeurs de n le reste de la division euclidienne de 9n+17 par 2n+3

3 Congruences

Exercice 8

Pour chaque valeur de a , déterminer un entier b tel que $a \equiv b$ [11] avec $0 \le b < 11$

a = 37:

a = 5002:

a = 186:

a = -7:

a = -12:

Exercice 9

Déterminer le reste de 7² dans la division euclidienne par 5 :

Déterminer le reste de 7^4 dans la division euclidienne par 5 :

Déterminer le reste de 7⁴⁰⁸ dans la division euclidienne par 5 :

Déterminer le reste de 7^{4k} dans la division euclidienne par 5 , puis celui de 7^{4k+1} , de 7^{4k+2} et 7^{4k+3} pour k entier relatif :

Astuce

Fiche méthode!

Exercice 10

Déterminer les différents restes possibles de la division euclidienne de 3^n par 8.

Exercice 11

Déterminer le reste de $421^{120} \times 99^{15}$ dans la division euclidienne par 7.

Déterminer le reste de la division euclidienne de 2012²⁰¹¹ par 5.

Exercice 12

Montrer que $16^{31} - 2^{31}$ est divisible par 14.

Montrer que $13^{20} + 9^{20}$ est divisible par 11.

Exercices maison divisibilité

Montrer que $5^{10} + 1$ est divisible par 13.

Exercice 13

Déterminer les entiers naturels n tels que n^2-3n+6 soit divisible par 5. Pour cela , compléter la table de congruence modulo ci-dessous :

n	0	1	2	3	4
$n^2 - 3n + 6$					

Exercice 14

Montrer que pour tout entier naturel n, n(n+5)(n+7) est un multiple de 3.

Exercice 15

Résoudre dans $\mathbb Z$ l'équation suivante : $4x \equiv 6$ [7] .

Résoudre dans \mathbb{Z} l'équation suivante : $5x + 25 \equiv 56$ [7].

Résoudre dans \mathbb{Z} l'équation suivante : $7x \equiv 3$ [10].

Résoudre dans \mathbb{Z} l'équation suivante : $2x \equiv 5$ [6].

Exercice 16

Déterminer le chiffre des unités de 11^{1000} ; pour avoir uniquement le chiffre des unités d'un nombre , on doit travailler modulo

Déterminer le chiffre des unités de 2⁶³ :